
MyTVchain
Smart Contract Security Analysis

Published on : Nov 23, 2021

Version v2.0

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved

Smart Contract Audit Certificate

MyTVchain

Security Report Published by HAECHI AUDIT

v1.0 Nov 10, 2021

v2.0 Nov 23, 2021

Auditor : Hoon Won

Executive Summary

Severity of Issues Findings Resolved Unresolved Acknowledged Comment

Critical - - - - -

Major 1 1 - - -

Minor 4 3 - - -

Tips 1 1 - - -

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
1

TABLE OF CONTENTS

5 Issues (0 Critical, 1 Major, 4 Minor) Found

TABLE OF CONTENTS

ABOUT US

INTRODUCTION

SUMMARY

OVERVIEW

FINDINGS

The id information of MyTvStaking#stakingFlexKeys may mismatch with the id

information of MyTvStaking#stakingFlex.

In the MyTvStaking#unstakeLock() function, MyTvStaking#penaltyBalance value may
be updated as unintended.

StakingPack already in progress can call the MyTvStaking#deleteStakingPack()
function.

The reward value of StakingFlex is not 0 in the MyTvStaking#stakeFor() function.

Even when MyTvStaking#unstakeFlex() is called to unstake all the amount, the
currentUser information is not updated.

There are missing events.

DISCLAIMER

Appendix A. Test Results

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
2

ABOUT US

HAECHI AUDIT believes in the power of cryptocurrency and the next paradigm it will bring. We

have the vision to empower the next generation of finance. By providing security and trust in the

blockchain industry, we dream of a world where everyone has easy access to blockchain

technology.

HAECHI AUDIT is a flagship service of HAECHI LABS, the leader of the global blockchain industry.

HAECHI AUDIT provides specialized and professional smart contract security auditing and

development services.

We are a team of experts with years of experience in the blockchain field and have been trusted by

300+ project groups. Our notable partners include Universe,1inch, Klaytn, Badger, etc.

HAECHI AUDIT is the only blockchain technology company selected for the Samsung Electronics

Startup Incubation Program in recognition of our expertise. We have also received technology

grants from the Ethereum Foundation and Ethereum Community Fund.

Inquiries: audit@haechi.io

Website: audit.haechi.io

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
3

INTRODUCTION

This report was prepared to audit the security of MyTV smart contract created by

MyTVchain team. HAECHI AUDIT focused on whether the smart contract created by

MyTVchain team is soundly implemented and designed as specified in the published

materials, in addition to the safety and security of the smart contract.

Critical issues must be resolved as critical flaws that can harm a wide

range of users.

Major issues require correction because they either have security

problems or are implemented not as intended.

Minor issues can potentially cause problems and therefore require

correction.

Tips issues can improve the code usability or efficiency when

corrected.

HAECHI AUDIT recommends MyTVchain team improve all issues discovered. The

following issue explanation uses the format of {file name}#{line number}, {contract

name}#{function/variable name} to specify the code. For instance, Sample.sol:20 points

to the 20th line of Sample.sol file, while Sample#fallback() means the fallback() function

of the Sample contract. Please refer to the Appendix to check all results of the tests

conducted for this report.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
4

SUMMARY

The codes used in this Audit can be found at GitHub

(https://github.com/smart-chain-fr/smartcontractMyTV/tree/main/packages/hardhat/

contracts). The last commit of the code used in this Audit is

“01f6569a606026572a673e7146e50ee7f06523d6”.

Issues HAECHI AUDIT found 0 critical issues, 1 major issue, and 4 minor

issues. There is 1 Tips issue that can improve the code’s usability or

efficiency upon modification.

update [v.2.0] In the new commit

b394a3a2026a1d0d194cd9eaa87d9b69f959b9ee, 1 major issue,

3 minor issues, and 1 Tips issue have been revised.

Severity Issue Status

The id information of MyTvStaking#stakingFlexKeys

may mismatch with the id information of

MyTvStaking#stakingFlex.

(Found - v1.0)

(Resolved - v2.0)

In the MyTvStaking#unstakeLock() function,

MyTvStaking#penaltyBalance value may be updated

as unintended.

(Found - v1.0)

(Resolved - v2.0)

StakingPack already in progress can call the

MyTvStaking#deleteStakingPack() function.

(Found - v1.0)

(Resolved - v2.0)

The reward value of StakingFlex is not 0 in the

MyTvStaking#stakeFor() function.

(Found - v1.0)

(Resolved - v2.0)

Even when MyTvStaking#unstakeFlex() is called to

unstake all the amount, the currentUser information

is not updated.

(Found - v1.0)

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
5

There are missing Events. (Found - v1.0)

(Resolved - v2.0)

OVERVIEW

Contracts subject to audit

❖ MyTvGovernanceToken

❖ MyTvLock

❖ MyTvStaking

❖ MyTvFarming

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
6

FINDINGS

The id information of MyTvStaking#stakingFlexKeys may mismatch with the id

information of MyTvStaking#stakingFlex.

(Found - v.1.0) (Resolved - v.2.0)

530 function unstakeFlex(uint256 amount) external nonReentrant returns (bool) {

531 StakingFlex storage stakingFlex = stakedFlex[msg.sender];

532 require(stakingFlex.amount >= amount, "Amount exceeds staked balance");

533 require(amount > 0, "Unstake amount cannot be 0");

534 uint256 reward = stakingFlex.reward.add(

535 getReward(

536 stakingFlex.timestamp,

537 block.timestamp,

538 stakingFlex.amount,

539 stakingFlex.rate

540)

541);

542 require(

543 myTvGovernanceToken.balanceOf(address(this)) > amount.add(reward),

544 "Staking Contract cannot pay rewards"

545);

546 uint256 stakedBalance = stakingFlex.amount;

547 stakingFlex.amount = stakingFlex.amount.sub(amount);

548 stakingFlex.timestamp = block.timestamp;

549 balancesStaked[msg.sender] = balancesStaked[msg.sender].sub(amount);

550 totalStake = totalStake.sub(amount);

551

552 if (amount == stakedBalance) {

553 stakedFlexKeys[stakingFlex.id] = stakedFlexKeys[

554 stakedFlexKeys.length.sub(1)

555];

556 stakedFlexKeys.pop();

557 }

558 myTvGovernanceToken.safeTransfer(msg.sender, amount.add(reward));

559 emit Unstake(msg.sender, 0, amount.add(reward));

560 return true;

561 }

[https://github.com/smart-chain-fr/smartcontractMyTV/blob/main/packages/hardhat/contracts/MyTvStaking.sol#L530-L5

61]

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
7

Issue

When a user unstakes all the amount staked in flexible stakePack, the

MyTvStaking#unstakeFlex() function removes the user’s address from

MyTvStaking#stakedFlexKeys array. Because the removal first swaps the last element of

the array with the user then removes the last element, another user’s index (id)

corresponding to the last element is changed.

However, at this time, another user’s MyTvStaking#stakedFlex id info is not updated

together, causing a mismatch of the id info between MyTvStaking#stakedFlexKeys and

MyTvStaking#stakedFlex.

Recommendation

We recommend adding a logic that also modifies another user’s MyTvStaking#stakedFlex

id information when modifying the MyTvStaking#stakedFlexKeys array in the

MyTvStaking#unstakeFlex() function.

Update

[v2.0] - The issue has been resolved by removing the logic in which the

MyTvStaking#unstakeFlex() function removes the user’s address from the

MyTvStaking#stakedFlexKeys array when the user unstakes all staked amounts in the

flexible stakePack.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
8

In the MyTvStaking#unstakeLock() function, MyTvStaking#penaltyBalance value may be

updated as unintended.

(Found - v.1.0) (Resolved - v.2.0)

641 function unstakeLock(uint256 stakeId)

642 external

643 nonReentrant

644 returns (uint256)

645 {

646 uint256 amountUnstaked;

647 uint256 penaltyBalance_ = 0;

648 require(

649 stakeId < staked[msg.sender].length,

650 "User stake does not exist"

651);

652 Staking storage staking = staked[msg.sender][stakeId];

653 uint256 packId_ = staking.packId;

654 if (block.timestamp < (staking.timestamp).add(staking.period)) {

655 require(staking.unlockable, "Can't unlock this staking");

656 uint256 penalty = getReward(

657 block.timestamp,

658 block.timestamp.add(365 days),

659 staking.amount,

660 staking.feesOnStakeIfUnstakeEarlier

661);

662 amountUnstaked = staking.amount.sub(penalty);

663 penaltyBalance_ = penaltyBalance.add(

664 staking.reward.sub(staking.claimed)

665);

666 } else {

667 amountUnstaked = staking.amount.add(

668 (staking.reward).sub(staking.claimed)

669);

670 }

671 require(

672 myTvGovernanceToken.balanceOf(address(this)) > amountUnstaked,

673 "Staking Contract cannot pay"

674);

675 penaltyBalance = penaltyBalance_;

676 balancesStaked[msg.sender] = balancesStaked[msg.sender].sub(

677 staking.amount

678);

679 totalStake = totalStake.sub(staking.amount);

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
9

680 stakingOptions[staking.packId].currentUser = stakingOptions[

681 staking.packId

682]

683 .currentUser

684 .sub(1);

685 staked[msg.sender][stakeId] = staked[msg.sender][

686 staked[msg.sender].length.sub(1)

687];

688 staked[msg.sender].pop();

689

690 myTvGovernanceToken.safeTransfer(msg.sender, amountUnstaked);

691 emit Unstake(msg.sender, packId_, amountUnstaked);

692 return amountUnstaked;

693 }

[https://github.com/smart-chain-fr/smartcontractMyTV/blob/main/packages/hardhat/contracts/MyTvStaking.sol#L641-L6

93]

Issue

MyTvStaking#penaltyBalance is identified as a variable that sets a penalty of a certain

percentage when a user unstakes or claims earlier than the period of the stacking pack,

and that accumulates and stores thereof. However, in the case of

MyTvStaking#L663-665 and MyTvStaking#L675, when a user calls the

MyTvStaking#unstakeLock() function earlier than the set period, they add and update an

unclaimed reward, not the penalty, to MyTvStaking#penaltyBalance . This likely conflicts

with the intention to accumulate and store penalties in MyTvStaking#penaltyBalance.

Furthermore, when a user calls the MyTvStaking#unstakeLock() function after the set

period has elapsed, MyTvStaking#penaltyBalance is updated to penaltyBalance_, which

was initialized to 0, by MyTvStaking#L675, causing the value stored earlier to disappear.

This also likely conflicts with the intention.

Recommendation

We recommend modifying the logic appropriately so that MyTvStaking#penaltyBalance

updates can occur correctly.

Update

[v2.0] - The issue has been resolved by modifying the logic so that

MyTvStaking#penaltyBalance can be properly accumulated.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
10

StakingPack already in progress can call the MyTvStaking#deleteStakingPack() function.

(Found - v.1.0) (Resolved - v.2.0)

317 function deleteStakingPack(uint256 packId)

318 external

319 onlyAllowed

320 packIdExists(packId)

321 returns (bool)

322 {

323 require(packId != 0, "Cannot delete flex pack");

324 stakingOptions[packId] = stakingOptions[stakingOptions.length - 1];

325 stakingOptions.pop();

326 emit StakingPackDeleted(packId);

327 return true;

328 }

[https://github.com/smart-chain-fr/smartcontractMyTV/blob/main/packages/hardhat/contracts/MyTvStaking.sol#L317-L3

28]

641 function unstakeLock(uint256 stakeId)

642 external

643 nonReentrant

644 returns (uint256)

645 {

646 uint256 amountUnstaked;

647 uint256 penaltyBalance_ = 0;

648 require(

649 stakeId < staked[msg.sender].length,

650 "User stake does not exist"

651);

652 Staking storage staking = staked[msg.sender][stakeId];

653 uint256 packId_ = staking.packId;

654 if (block.timestamp < (staking.timestamp).add(staking.period)) {

655 require(staking.unlockable, "Can't unlock this staking");

656 uint256 penalty = getReward(

657 block.timestamp,

658 block.timestamp.add(365 days),

659 staking.amount,

660 staking.feesOnStakeIfUnstakeEarlier

661);

662 amountUnstaked = staking.amount.sub(penalty);

663 penaltyBalance_ = penaltyBalance.add(

664 staking.reward.sub(staking.claimed)

665);

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
11

666 } else {

667 amountUnstaked = staking.amount.add(

668 (staking.reward).sub(staking.claimed)

669);

670 }

671 require(

672 myTvGovernanceToken.balanceOf(address(this)) > amountUnstaked,

673 "Staking Contract cannot pay"

674);

675 penaltyBalance = penaltyBalance_;

676 balancesStaked[msg.sender] = balancesStaked[msg.sender].sub(

677 staking.amount

678);

679 totalStake = totalStake.sub(staking.amount);

680 stakingOptions[staking.packId].currentUser = stakingOptions[

681 staking.packId

682]

683 .currentUser

684 .sub(1);

685 staked[msg.sender][stakeId] = staked[msg.sender][

686 staked[msg.sender].length.sub(1)

687];

688 staked[msg.sender].pop();

689

690 myTvGovernanceToken.safeTransfer(msg.sender, amountUnstaked);

691 emit Unstake(msg.sender, packId_, amountUnstaked);

692 return amountUnstaked;

693 }

[https://github.com/smart-chain-fr/smartcontractMyTV/blob/main/packages/hardhat/contracts/MyTvStaking.sol#L641-L6

93]

Issue

The MyTvStaking#deleteStakingPack() function removes the index element

corresponding to the packId received as a parameter from the

MyTvStaking#stakingOptions array. However, when there is a user who has already

participated in the removed StakingPack, there may be a problem in MyTvStaking#L680

trying to access the non-existent element of the MyTvStaking#stakingOptions array

when the user calls the MyTvStaking#unstakeLock() function afterward.

Recommendation

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
12

We recommend adding a require() statement that requires there is no ongoing

StakingPack corresponding to the packId received as a parameter in the

MyTvStaking#deleteStakingPack() function.

Acknowledgement

If the implementation was intended, no modification is necessary.

Update

[v2.0] - The issue has been resolved by deleting the MyTvStaking#deleteStakingPack()

function.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
13

The reward value of StakingFlex is not 0 in the MyTvStaking#stakeFor() function.

(Found - v.1.0) (Resolved - v.2.0)

700 function stakeFor(

701 address from,

702 uint256 amount,

703 uint256 packId

704) external onlyOwner packIdExists(packId) returns (bool) {

705 require(stakeForEnabled, "This function is disabled");

706 StakingPack storage stakingPack = stakingOptions[packId];

707 require(amount > stakingPack.minStake, "Amount < minStake");

708 require(

709 amount < stakingPack.maxStake || stakingPack.maxStake == 0,

710 "Amount > maxStake"

711);

712 require(

713 stakingPack.currentUser < stakingPack.maxUser ||

714 stakingPack.maxUser == 0,

715 "This pack is not available"

716);

717

718 uint256 reward = getReward(

719 block.timestamp,

720 block.timestamp.add(stakingPack.period),

721 amount,

722 stakingPack.rate

723);

724

725 require(

726 myTvGovernanceToken.balanceOf(address(this)) > amount.add(reward),

727 "Staking Contract cannot allocate stake"

728);

729

730 if (packId > 0) {

731 staked[from].push(

732 Staking(

733 stakingPack.period,

734 stakingPack.rate,

735 block.timestamp,

736 amount,

737 reward,

738 stakingPack.unlockable,

739 stakingPack.claimable,

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
14

740 0,

741 stakingPack.feesOnRewardIfUnstakeEarlier,

742 stakingPack.feesOnStakeIfUnstakeEarlier,

743 packId

744)

745);

746 } else {

747 require(

748 stakedFlex[from].amount == 0,

749 "You already have a staking flex"

750);

751 stakedFlex[from] = StakingFlex(

752 stakingPack.rate,

753 block.timestamp,

754 amount,

755 reward,

756 stakedFlexKeys.length

757);

758 stakedFlexKeys.push(from);

759 }

760 stakingPack.currentUser = stakingPack.currentUser.add(1);

761 balancesStaked[from] = balancesStaked[from].add(amount);

762 totalStake = totalStake.add(amount);

763

764 emit Stake(from, packId, amount, stakingPack.period, stakingPack.rate);

765 return true;

766 }

[https://github.com/smart-chain-fr/smartcontractMyTV/blob/main/packages/hardhat/contracts/MyTvStaking.sol#L700-L7

66]

Issue

It is identified that Flexible staking pack acts as intended when the reward value is

entered as 0 in MyTvStaking#stakedFlex when staking. However, in the case of the

MyTvStaking#stakeFor()function, the reward value enters MyTvStaking#stakedFlex as a

significant value, unlike staking in the flexible stacking pack with the

MyTvStaking#stake() function. This can cause unintended behavior in the

MyTvStaking#increaseStakeFlex() function and other places.

Recommendation

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
15

We advise to input 0 as the reward value in MyTvStaking#stakedFlex if packId is 0 when

the MyTvStaking#stakeFor() function is called.

Acknowledgment

If the implementation was intended, no modification is necessary.

Update

[v2.0] - The issue has been resolved by removing the reward attribute from the

MyTvStaking#stakedFlex struct and eliminating the logic that uses the reward in

MyTvStaking#stakedFlex from the MyTvStaking#increaseStakeFlex() function, etc.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
16

Even when MyTvStaking#unstakeFlex() is called to unstake all the amount, the

currentUser information is not updated.

(Found - v.1.0)

530 function unstakeFlex(uint256 amount) external nonReentrant returns (bool) {

531 StakingFlex storage stakingFlex = stakedFlex[msg.sender];

532 require(stakingFlex.amount >= amount, "Amount exceeds staked balance");

533 require(amount > 0, "Unstake amount cannot be 0");

534 uint256 reward = stakingFlex.reward.add(

535 getReward(

536 stakingFlex.timestamp,

537 block.timestamp,

538 stakingFlex.amount,

539 stakingFlex.rate

540)

541);

542 require(

543 myTvGovernanceToken.balanceOf(address(this)) > amount.add(reward),

544 "Staking Contract cannot pay rewards"

545);

546 uint256 stakedBalance = stakingFlex.amount;

547 stakingFlex.amount = stakingFlex.amount.sub(amount);

548 stakingFlex.timestamp = block.timestamp;

549 balancesStaked[msg.sender] = balancesStaked[msg.sender].sub(amount);

550 totalStake = totalStake.sub(amount);

551

552 if (amount == stakedBalance) {

553 stakedFlexKeys[stakingFlex.id] = stakedFlexKeys[

554 stakedFlexKeys.length.sub(1)

555];

556 stakedFlexKeys.pop();

557 }

558 myTvGovernanceToken.safeTransfer(msg.sender, amount.add(reward));

559 emit Unstake(msg.sender, 0, amount.add(reward));

560 return true;

561 }

[https://github.com/smart-chain-fr/smartcontractMyTV/blob/main/packages/hardhat/contracts/MyTvStaking.sol#L530-L5

61]

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
17

Issue

When a user unstakes all staked amount in the flexible staking pack, the

MyTvStaking#unstakeFlex() function removes the user’s address from the

MyTvStaking#stakedFlexKeys array. However, inside the function, it does not update the

currentUser of the corresponding stake pack. This is likely to be an unintended behavior.

Recommendation

We recommend adding a statement that updates the currentUSer of the stake pack

inside the function when a user calls the MyTvStaking#unstakeFlex() function to unstake

all the staked amount.

Acknowledgement

If the implementation was intended, no modification is necessary.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
18

There are missing events.

(Found - v.1.0) (Resolved - v.2.0)

The following is a list of functions with missing Events.

Function Expected Event Emitted Event Omitted Event

transferToReserveAndBurn TransferReserve, Burn Burn TransferReserve

Without Event, it is difficult to identify in real-time whether accurate values are recorded

on the blockchain. In this case, it becomes problematic to determine whether the

corresponding value has been changed in the application and whether the

corresponding function has been called.

Thus, we recommended adding Events corresponding to the change occurring in the

function.

Update

[v2.0] - Events have been appropriately added.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
19

DISCLAIMER

This report does not guarantee investment advice, the suitability of the business

models, and codes that are secure without bugs. This report shall only be used to

discuss known technical issues. Other than the issues described in this report,

undiscovered issues may exist such as defects on the main network. In order to write

secure smart contracts, correction of discovered problems and sufficient testing

thereof are required.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
20

Appendix A. Test Results

The following results show the unit test results covering the key logic of the smart

contract subject to the security audit. Parts marked in red are test cases that failed to

pass the test due to existing issues.

SafeERC20

with address that has no contract code

✓ reverts on transfer

✓ reverts on transferFrom

✓ reverts on approve

✓ reverts on increaseAllowance

✓ reverts on decreaseAllowance

with token that returns false on all calls

✓ reverts on transfer

✓ reverts on transferFrom

✓ reverts on approve

✓ reverts on increaseAllowance

✓ reverts on decreaseAllowance

with token that returns true on all calls

✓ doesn't revert on transfer

✓ doesn't revert on transferFrom

approvals

with zero allowance

✓ doesn't revert when approving a non-zero allowance

✓ doesn't revert when approving a zero allowance

✓ doesn't revert when increasing the allowance

✓ reverts when decreasing the allowance

with non-zero allowance

✓ reverts when approving a non-zero allowance

✓ doesn't revert when approving a zero allowance

✓ doesn't revert when increasing the allowance

✓ doesn't revert when decreasing the allowance to a positive value

✓ reverts when decreasing the allowance to a negative value

with token that returns no boolean values

✓ doesn't revert on transfer

✓ doesn't revert on transferFrom

approvals

with zero allowance

✓ doesn't revert when approving a non-zero allowance

✓ doesn't revert when approving a zero allowance

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
21

✓ doesn't revert when increasing the allowance

✓ reverts when decreasing the allowance

with non-zero allowance

✓ reverts when approving a non-zero allowance

✓ doesn't revert when approving a zero allowance

✓ doesn't revert when increasing the allowance

✓ doesn't revert when decreasing the allowance to a positive value

✓ reverts when decreasing the allowance to a negative value

SafeMath

add

✓ adds correctly

✓ reverts on addition overflow

sub

✓ subtracts correctly

✓ reverts if subtraction result would be negative

mul

✓ multiplies correctly

✓ multiplies by zero correctly

✓ reverts on multiplication overflow

div

✓ divides correctly

✓ divides zero correctly

✓ returns complete number result on non-even division

✓ reverts on division by zero

mod

✓ reverts with a 0 divisor

modulos correctly

✓ when the dividend is smaller than the divisor

✓ when the dividend is equal to the divisor

✓ when the dividend is larger than the divisor

✓ when the dividend is a multiple of the divisor

ERC20Snapshot

#_snapshot()

✓ should creates increasing snapshots ids, starting from 1

valid case

✓ should emits a snapshot event

#totalSupplyAt()

✓ should fail if snapshot id is zero

✓ should fail if snapshot is not-yet-created

valid case

with no supply changes after the snapshot

✓ should return current total supply

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
22

with supply changes after the snapshot

✓ should return total supply before the changes

with a second snapshot after supply changes

✓ should return the supply before and after the changes

with multiple snapshots after supply changes

✓ all posterior snapshots should return supply after the changes

#balanceOfAt()

✓ should fail if snapshot id is zero

✓ should fail if snapshout is not-yet-created

valid case

with no balance changes after the snapshot

✓ should return current balance for all accounts

with balance changes after the snapshot

✓ should returns the balances before the changes

with a second snapshot after supply changes

✓ snapshots should return the balances before and after the changes

with multiple snapshots after supply changes

✓ all posterior snapshots should return the supply after the changes (69ms)

MyTvFarming

#add()

✓ should fail if msg.sender is not owner

valid case

✓ new pool should be pushed to poolInfo

✓ totalAllocPoint should increase

✓ should emit Add event

#set()

✓ should fail if msg.sender is not owner

✓ should fail if pool id does not exist

valid case

✓ pool should be updated properly

✓ totalAllocPoint should be updated properly

#updatePool()

✓ should fail if pool id does not exist

✓ should not update if block.number is less than lastRewardBlock

✓ should not update except lastRewardBlock if lpSupply is zero

✓ should fail if staking contract does not have enough funds to pay rewards

valid case

✓ should update pool properly

#deposit()

✓ should fail if pool id does not exist

✓ should fail if msg.sender's balance is less than amount

✓ should fail if msg.sender's allowance for lpToken contract is less than amount

valid case

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
23

✓ should deposit in pool

✓ lpToken contract's balance should increase

✓ msg.sender's balance should decresase

✓ should emit Deposit event (74ms)

#withdraw()

✓ should fail if pool id does not exist

✓ should fail if withdraw amount is greater than deposit amount

✓ should fail if staking contract does not have enough funds to pay rewards (40ms)

valid case1: partial withdraw

✓ should withdraw properly (74ms)

✓ should emit Withdraw event (59ms)

valid case2: withdraw all

✓ should withdraw properly (64ms)

✓ should emit Withdraw event (58ms)

MyTvGovernanceToken

#constructor()

✓ should set name properly

✓ should set symbol properly

✓ should set decimals properly

✓ should set initial supply properly

ERC20 Spec

#transfer()

✓ should fail if recipient is ZERO_ADDRESS

✓ should fail if sender's amount is lower than balance

when succeeded

✓ sender's balance should decrease

✓ recipient's balance should increase

✓ should emit Transfer event

#transferFrom()

✓ should fail if sender is ZERO_ADDRESS

✓ should fail if recipient is ZERO_ADDRESS

✓ should fail if sender's amount is lower than transfer amount

✓ should fail if allowance is lower than transfer amount

✓ should fail even if try to transfer sender's token without approve process

when succeeded

✓ sender's balance should decrease

✓ recipient's balance should increase

✓ should emit Transfer event

✓ allowance should decrease

✓ should emit Approval event

#approve()

✓ should fail if spender is ZERO_ADDRESS

valid case

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
24

✓ allowance should set appropriately

✓ should emit Approval event

#increaseAllowance()

✓ should fail if spender is ZERO_ADDRESS

✓ should fail if overflows

valid case

✓ allowance should set appropriately

✓ should emit Approval event

#decreaseAllowance()

✓ should fail if spender is ZERO_ADDRESS

✓ should fail if overflows

valid case

✓ allowance should set appropriately

✓ should emit Approval event

ERC20 Burnable Spec

#burn()

✓ should fail if try to burn more than burner's balance

valid case

✓ totalSupply should decrease

✓ account's balance should decrease

✓ should emit Transfer event

✓ should emit Burn event

MyTvGovernanceToken Spec

#setStakingAddress()

✓ should fail if msg.sender is not owner nor votingContract

✓ should fail if msg.sender is AddressZero

valid case

✓ stakingAddress should be set properly

✓ should emit StakingAddressUpdated Event

#setVotingContract()

✓ should fail if msg.sender is not owner nor votingContract

✓ should fail if msg.sender is AddressZero

valid case

✓ votingContract should be set properly

✓ should emit VotingContractUpdated Event

#updateBurnPercentage()

✓ should fail if msg.sender is not owner nor votingContract

valid case

✓ votingContract should be set properly

✓ should emit BurnPercentageUpdated Event

#transferToReserve()

✓ should fail if msg.sender's balance is less than amount

✓ should fail if the stakingAddress has not yet been set

✓ should fail if amount is zero

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
25

valid case

✓ stakingAddress' balance should increase

✓ msg.sender's balance should decrease

✓ should emit TransferReserve Event

#transferToReserveAndBurn()

✓ should fail if msg.sender's balance is less than amount

✓ should fail if the stakingAddress has not yet been set

✓ should fail if amount is zero

valid case

✓ stakingAddress' balance should increase

✓ msg.sender's balance should decrease

1) should emit TransferReserve Event

2) should emit burn Event

#snapshot()

✓ should fail if msg.sender is not owner

✓ should creates increasing snapshots ids, starting from 1

valid case

✓ should emits a snapshot event

MyTvLock

#constructor()

✓ myTvGovernanceToken should be set properly

✓ lockForEnabled should be true

#disableLockFor()

✓ should fail if msg.sender is not owner

valid case

✓ lockForEnabled should be false

✓ should emit DisableLockForUpdated event

#lockFor()

✓ should fail if msg.sender is not owner

✓ should fail if lockFor function is disabled

✓ should fail if contract's unlocked balance is not greater than amount

valid case

✓ AddressToTokenLock info for from address should be set properly

✓ totalLocked should increase

✓ should emit TokenLocked event

#unlockToken()

✓ should fail if token lock info for msg.sender does not exist

✓ should fail if msg.sender already unlocked all token

✓ should fail if less than 30 days have passed since the token was locked

✓ should fail if contract's balance is less than unlocked amount

valid case

after 30days

✓ msg.sender's balance should not change

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
26

✓ contract's balance should not change

✓ totalLocked should not change

✓ claimed should not change

✓ should emit TokenUnlocked event

after (30 + 50)days

✓ msg.sender's balance should increase

✓ contract's balance should decrease

✓ totalLocked should decrease

✓ claimed should increase

✓ should emit TokenUnlocked event

after (30 + 50 + 60)days

✓ msg.sender's balance should increase

✓ contract's balance should decrease

✓ totalLocked should decrease

✓ claimed should increase

✓ should emit TokenUnlocked event

after (30 + 50 + 60 + 100)days

✓ should fail if call #unlockToken() function

MyTvStaking

#constructor()

✓ myTvRewardAddress should be AddressZero

✓ myTvRewardAmount should be zero

✓ myTvRewardPeriod should be zero

✓ totalStake should be zero

✓ stakeForEnabled should be true

✓ myTvGovernanceToken should be set properly

#disableStakeFor()

✓ should fail if msg.sender is not owner

valid case

✓ lockForEnabled should be false

✓ should emit StakeForEnabledUpdated event

#updateMyTvRewardAmount()

✓ should fail if msg.sender is not owner nor votingContract

valid case

✓ myTvRewardAmount should be set properly

✓ should emit MyTvRewardAmountUpdated Event

#updateMyTvRewardAddress()

✓ should fail if msg.sender is not owner nor votingContract

✓ should fail if newAddress is AddressZero

valid case

✓ myTvRewardAddress should be set properly

✓ should emit MyTvRewardAddressUpdated Event

#updateMyTvRewardPeriod()

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
27

✓ should fail if msg.sender is not owner nor votingContract

✓ should fail if newPeriod is zero

valid case

✓ myTvRewardAddress should be set properly

✓ should emit MyTvRewardPeriodUpdated Event

#addStakingPack()

✓ should fail if msg.sender is not owner nor votingContract

✓ should fail if minStake is greater than or equal maxStake

valid case

✓ stakingPack info should be pushed to stakingOptions properly

✓ should emit StakingPackAdded event

#setStakingPack()

✓ should fail if msg.sender is not owner nor votingContract

✓ should fail if the stakingPack corresponding to packId does not exist

✓ should fail if minStake is greater than or equal maxStake

valid case

✓ stakingPack info should be updated properly

✓ should emit StakingPackUpdated event

#deleteStakingPack()

✓ should fail if msg.sender is not owner nor votingContract

✓ should fail if packId does not exist

✓ should fail if packId is zero

3) should fail if the stakeOption of packId is in progress

valid case

✓ stakingPack info should be deleted properly (62ms)

✓ should emit StakingPackUpdated event

#stake()

✓ should fail if the stakingPack corresponding to packId does not exist,

✓ should fail if onlyAdmin is true

✓ should fail if amount is less than minStake

✓ should fail if maxStake is not zero and amount is greater than maxStake

✓ should fail if currentUser is equal to maxUser (96ms)

✓ should fail if contract's balance is less than reward

✓ should fail if msg.sender already have a staking flex and try to flexible stake (45ms)

✓ should fail if msg.sender's balance is less than amount (40ms)

✓ should fail if msg.sender's allowance for contract is less than amount

valid case

✓ contract's balance should increase

✓ msg.sender's balance should decrease

✓ currentUser should increase

✓ balancesStaked should increase

✓ totalStaked should increase

✓ should emit Stake event

case1: non flexible staking

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
28

✓ staking info pushed to msg.sender's staked info array properly

case2: flexible staking

✓ msg.sender's stakedFlex info should be set properly

✓ msg.sender's address should be pushed to stakedFlexKeys array

#updateStakeFlexRate()

✓ should fail if msg.sender is not owner (87ms)

✓ should fail if x is greater than or equal y (79ms)

✓ should fail if x is greater than or equal stakedFlexKeys' length (78ms)

✓ should fail if y is greater than stakedFlexKeys' length (83ms)

valid case

✓ stakingFlex's amount info should be changed to the value added to the reward up to

the time the function is called

✓ stakingFlex's rate should be updated properly

✓ stakingFlex's timestamp should be updated properly (56ms)

#increaseStakeFlex()

✓ should fail if msg.sender does not have a flexible staking

✓ should fail if contract's balance is less than msg.sender's total reward

✓ should fail if msg.sender's balance is less than amount (58ms)

✓ should fail if msg.sender's allowance for contract is less than amount (48ms)

valid case

✓ contract's balance should increase

✓ msg.sender's balance should decrease

✓ balancesStaked should increase

✓ stakingFlex's amount should increase

✓ stakingFlex's timestamp should be updated (47ms)

✓ totalStaked should increase

✓ should emit Stake event

#unstakeFlex()

✓ should fail if msg.sender does not have flexible staking

✓ should fail if amount exceeds staked balance

✓ should fail if amount is zero

✓ should fail if contract's balance is less than amount + reward (41ms)

valid case

✓ stakingFlex's amount should decrease (51ms)

✓ stakingFlex's timestamp should be updated properly (51ms)

✓ balancesStaked should decrease (46ms)

✓ totalStake should decrease (47ms)

✓ contract's balance should decrease (46ms)

✓ msg.sender's balance should increase (48ms)

✓ should emit Unstake event (43ms)

amount == stakedBalance case

✓ msg.sender's stakedFlexKey info should be deleted from stakedFlexKeys array (72ms)

4) stakingFlex's ids should be updated properly

#claimRewardFlex()

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
29

✓ should fail if msg.sender does not have flexible staking

✓ should fail contract's balance is less than reward (41ms)

valid case

✓ stakingFlex's timestamp should be updated properly (50ms)

✓ contract's balance should decrease (42ms)

✓ msg.sender's balance should increase (43ms)

#claimRewardLock()

✓ should fail if stake does not exist

✓ should fail if try to claim the reward before the end of the staking that is not claimable

(44ms)

✓ should fail if user has already claimed all the rewards (50ms)

case1: the period of stakingPack has passed

✓ reward should be set properly with no penalty (63ms)

✓ should fail if contract's balance is less than reward (52ms)

✓ claimed amount should be equal to total reward (66ms)

✓ panaltyBalance should not be changed (66ms)

✓ contract's balance should decrease (46ms)

✓ msg.sender's balance should increase (47ms)

case2: the period of stakingPack has not passed

✓ reward should be set properly with penalty (66ms)

✓ should fail if contract's balance is less than reward (44ms)

✓ claimed amount should increase (47ms)

✓ panaltyBalance should increase (51ms)

✓ contract's balance should decrease

✓ msg.sender's balance should increase

#unstakeLock()

✓ should fail if stake does not exist

✓ should fail if contract's balance is less than amountUnstaked (50ms)

✓ balancesStaked should decrease (59ms)

✓ totalStake should decrease (63ms)

✓ currentUser should decrease (62ms)

✓ msg.sender's staked info should be deleted properly (61ms)

✓ contract's balance should decrease (58ms)

✓ msg.sender's balance should increase (59ms)

✓ should emit Unstake event (56ms)

case1: the period of stakingPack has not passed

✓ should fail if stakingPack is not unlockable (45ms)

✓ amountUnstaked should be set properly with penalty (62ms)

5) panaltyBalance should increase properly

case2: the period of stakingPack has passed

✓ amountUnstaked should be set properly with reward (57ms)

6) panaltyBalance should not change

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
30

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/

MyTvFarming.sol 100 100 100 100

MyTvGovernanceToken.sol 100 100 100 100

MyTvLock.sol 100 100 100 100

MyTvStaking.sol 100 100 100 100

[Table 1] Test Case Coverage

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
31

End of Document

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
32

